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Branching Exclusion Process on a Strip 
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We consider a model of stochastically interacting particles on an infinite strip of 
~_-'; in tiffs model, known as a branching exclusion process, particles jump to 
each empty neighboring site with rate 2/4 and also can create a new particle 
with rate 1/4 at each one of these sites. The initial configuration is assumed to 
have a rightmost particle and we study the process as seen fiom the rightmost 
vertical line occupied. We prove that this process has exactly one invariant 
measure with the property that H. the number of empty sites to the left of the 
rightmost particle, has an exponential moment. Tiffs refines a result presented 
by Bramson et al., who proved that Ibr d=  I, H is finite with probability I. 

KEY WORDS: Microscopic interface; branching exclusion process; inwlriant 
measure; hitting time. 

1. I N T R O D U C T I O N  

We cons ide r  the b r a n c h i n g  exc lus ion  process  BE(2)  as a M a r k o v i a n  
process if, wi th  s tate  s p a c e / 2 =  {0, 1 / z'~ As usual ,  we migh t  t h ink  of  this 
process as part ic les ,  i n t e r ac t i n g  on  the sites of  7/a, tha t  can  e i ther  j u m p  to 

or  create  new par t ic les  at their  neares t  n e i g h b o r i n g  e m p t y  sites. B r a n c h i n g  
is d o n e  ( in  case it is poss ible)  by exis t ing  par t ic les  after an  e x p o n e n t i a l  
wa i t ing  t ime  of  ra te  1. F o r  an y  n e i g h b o r i n g  sites x, y ~ 7/'~ we exchange  the 
values  at x a n d  y at ra te  2/2d;  this is cal led a s t i r r ing  process.  In  pract ice  
n o t h i n g  h a p p e n s  if x a n d  y are b o t h  e m p t y  or  b o t h  occupied ,  b u t  if, 
for ins tance ,  x is occup ied  a n d  3, is empty ,  we have  tha t  at  ra te  2 / 2 d  a 

part ic le  j u m p s  f rom x to y. F o r  this r eason  this is also cal led the exc lus ion  
process.  
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The branching exclusion process is a Markov process defined by the 
generator 

(Lf)(~) = 2  ~. p(i,j)[f(~"-i)--f(~)] + ~ p(j, i)[f(~J)--f(~)] ~(i) 
i, j ~. ~, l  i . . i  ~ Z ' l  

where f :  12 --, ~ is a cylindrical function, p(j, i) is 1/2d if [ji-Jl[~ = 1 and 0 
otherwise, and 

(~(i)  if x = j  
~i,.i(x) = ~ ( j )  if x = i 

[~(x)  otherwise 

j {1 if x = j  
(x) = ~(x) otherwise 

The simplest way of defining this process is the graphical representa- 
tion. The main idea is to build a structure of percolation on Z'tx [0, ~ ) ,  
over which we define the stirring and the growth processes. For  each pair 
x and y~_d  such that [ [ x - y l l t = l ,  let (i) {S!,-"'-"l,n>~l} be Poisson 
processes with rate 2/2d and at times S},"" .,'1 we draw an exclusion arrow 
(~--,) connecting x and y, and (ii) let {TI; ''.''~, n>~ 1} be Poisson processes 
with rate 1/2d and at times T~; ''-''1 we draw a contact arrow ( ~ )  from x 
to y. If at time t a double arrow appears between x and y, then the contents 
of x and y are exchanged. If a contact arrow appears from x to y and 
r  ~ , (y )=0 ,  then a new particle is created onto y. For more 
details about graphical representation see, for example, Durretd 7~ and 
Bramson et al/3~ 

In this paper we investigate this process in an infinite strip of 7/2 . This 
means that we do not allow particles to leave the strip or to create new 
particles off the strip. We start the process with a configuration that has a 
rightmost particle. Bramsom et al. ~3~ proved that in d =  1 the branching 
exclusion process as seen from the rightmost particle has only one invariant 
measure; moreover, that this measure has the feature that the horizontal 
distance between X, the rightmost particle, and Z the leftmost empty site, 
is a random variable assuming only finite values with probability one. 
Cammarotta and Ferrari ~61 showed that starting with this measure, the 
position of the rightmost particle (edge), conveniently rescaled and 
centered, converges to a Brownian motion. To do so, they prove that some 
regenerative times have a second moment finite. However, from their proof  
the problem of showing that under the invariant measure, for instance, the 
number of vacant sites to the left of the rightmost particle has first moment 
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finite remained open. our main result fill this gap as follows. For the 
process in the strip we show, following Bramson et al., ~3~ that there exists 
an invariant measure as seen from the rightmost particle. Furthermore, we 
show that the distance between the rightmost particle and the leftmost 
vacant site has an exponential moment. This implies that the interface 
region is very tight. This is probably due to the asymmetry of the motion. 
The same happens for the biased voter model in the strip. ~j) In contrast, 
for the one-dimensional, not-nearest-neighbor symmetric voter model, the 
interface is tight in the sense that X - Z  is finite with probability one, but 
its expectation is infinite, c5~ The same behavior is expected--but  not 
proved--for  the nearest neighbor voter model plus exclusion, and for the 
unbiased voter model in the strip. 

The fact that X - Z  has an exponential moment implies that, 
conveniently rescaled, the position of the rightmost particle (edge line) 
converges to a Brownian motion. We also show how to use the approach 
presented in Bramson et aU ~ to obtain that the average velocity V(2) of 
the edge satisfies 2 -  ~,,2 V(2 )~  1 as 2 ~ or, a result which holds as well for 
the strip with periodic boundary conditions (an infinite cylinder) and 
forming an angle with the coordinate axis. This is an indication that the 
asymptotic shape of the branching exclusion process in 7/2 rescaled by x/~ 
is the unitary circle. ~ ~') 

2. RELATED PROCESSES 

In what follows we denote by ~t,, the process whose distribution at time 
t = 0  is described by the measure /~; in particular we write ~7 for the 
process starting with configuration r/. We also write rlxli~ ,/ = 5Zi= i Ix/I and 
Ilxl12 = ( Z / = ,  x~),/2 for the norms of x = (xl ..... x,/) e Z d. 

We now define three processes related to BE(2). First of all we define 

~I = { x ~ Zd: ~,.(x) = 1 for some s <~ t} 

which is the set of sites that have already been visited by some particle of 
(,. We also define 

t , (x)  = inf{ t: ~ , (x )=  1} 

which we call' the f irst  hitting time of x; then for each x ~ 7/d we have that 

x e ( ~  r 

Another process embedded in ( ,  is 

( ~=  {x~ Zd: ~.,.= 1 for all s ~ t }  
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which is the set of  sites that,  up to t ime t, have been definitively occupied. 
The definitive occupation time is defined by 

t2(x) = sup{ t: r  = 0} 

and, consequently,  for each x e 7/a, 

x ~ r  r  t,_(x) <~ t 

Observe  that  if ~ , ( x ) =  1 for all t, then tz(x)= O. 
Durre t t  and Griffeath ~8) p roved  a general shape theorem that  can be 

applied to a {0, 1} "~'~-valued M a r k o v  process having the empty  set as an 
absorb ing  state and with its rates satisfying the following two conditions: 
t ranslat ion invariance and attractiveness,  which means  that  if A c B, then 
~;J and ~ can be coupled in such a way that  ~ t  c ~ for all t; they called 
it a growth process. With their result (see ref. 7, Chap te r  l i d )  we obta in  
that  P ( t 2 ( x ) < o v ) = l ,  which implies that  every finite region will be 
occupied forever after a sufficiently large t ime t. 

Finally we define the r a n d o m  walk XI '1 start ing at the site x and 
embedded  in ~-,-I. If  we imagine that  in the graphical  construct ion,  for 
each realization of  the process we have a ramificat ion over  Z ' Jx  [0,  ~ ) ,  we 
can tell that  this r a n d o m  walk chooses a branch of  the process ~I ' I  . Tha t  
construct ion,  applied to the asymmetr ic  voter  model,  is in B r a m s o m  and 
Griffeath. '4~ The general idea is that  XI '1 j u m p s  according to any exclusion 
ar row it encounters,  but  follows only the contac t  ar rows that  carry  it closer 
to the site x. For  x and t fixed, we define the following j u m p  rates: 

(i) If  X I "~ is at y, a site out  of  any set R i : =  { y = ( y l  ..... Y,)~7/a: 
35 = xi} for i =  1 ..... d, then there are two possibilities for the rate of  j umps  
from y to z such that  [[ y - z [l_, = 1: 

�9 If H z - x [ [ 2 <  [ [y -x [ [2 ,  then y ~ z  at rate ( 2 +  1)/(2d). 

�9 I f  I[z-xl12> JJ)'-xll2, then y--*z at rate 2/(2d). 

(ii) On the other  hand,  when XI":  is at y and y e R; for some i, then 
it j umps  f rom y to z such that  ] l y - z ] [ , =  1 by one of the following two 
possibilities: 

�9 If  z ~ -  x~ = 1 for some i such that  x~ = 3,~, then y --* z at (2 + 1 )/(2d). 

�9 If  z ~ - x ~ =  - 1  for some i such that  xg=yt ,  then y ~ z  at 2/(2d). 

Since it j umps  to one ha l f  of  its neighbors  at rate (2 + I )/2d and to the 
other  half  at rate 2/2d, this process j umps  at a rate (22 + 1 )/2, independent  
of  the current  position. Moreover ,  it has a uniformly positive drift toward  
the site x off of  some ball D, depending on 2. 
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We define in the same way X)" ." as a random walk starting at the site 
x with drift to the site y of 7/d. Finally, we define X ,  .... as a random walk 
in the horizontal strip starting at the site x with drift to the right. The next 
result holds for both 7/'/and the strip. 

L e m m a  1. For  t~ (0 )=sup{ t :~ l~  we have 

P ( t z ( 0 ) = 0 ) = p 2  > 0  

Proof. As mentioned above, from Durrett  and Griffeath Is) it follows 
that P(t2(0) < oo) = 1. Hence there exists t < ~ such that P(t2(0) < t) > 0. 
Then, for some fixed t, 

p(t2(o)<t)= ~ P(~l": =A) P(~!.~ ] Vs~tlC ~ =A) 
/l  f ini te  
{ol + A 

which implies that there exists a finite region A of 7/'/, enclosing the origin, 
~uch that 

0 < IP(~.! u} (0) = 1 Vs/> t141 ol = A) = P(r = 1 Vs ~> O) 

where the equality comes from the Markov property. For  this A we can 
assure that 

P ( r 1 7 6  = 1 Vs/> O) 

~> P(~l ~ ~ a ,  ~.!.~ 1, V0~<s~<t) P(~: ' (0 )=  1 u 

We now observe that the event {~I ~ = A, ( , . (0)= 1, V0 ~<s ~< t} has a 
strictly positive probability, since it depends on a finite region of the time 
and space. From this we can conclude that 

V(~.!.~ 1Vs~>0)>0 II 

As a direct consequence of the last result, the strong Markov property, 
and attractiveness, we have that P(t  ~(x)= t2(x))/> P2 > 0 for each x ~ Z a. 

3. E X P O N E N T I A L  T A I L  OF  T H E  D E F I N I T I V E  O C C U P A T I O N  T I M E  

The next,result tells us that the definitive time of occupation of the 
origin is stochastically dominated by a random variable that has an 
exponential tail (i.e., has a distribution with a tail that decays exponentially 
fast) for each 2 and d. The translation invariance of the dynamics implies 
that this upper bound works also for the distribution of the difference 
between the two times of occupation of any site of the lattice. The next 
result holds for both Z d and the strip. 
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T h e o r e m  2. Consider the BE(2) starting from one particle at the 
origin. There exist 0 < cj 7 < oo, depending on 2 and d, for which 

P(t2(0) > t) <~ Ce -~" 

Consequently P(t2(x) - t~(x) > t) <~ Ce-7" for all x ~ Z'( 

Proof .  For each realization of the process ~)o~ we define the sets of 
random times Oi, Di for i E ~ by Oo = D(~ = 0 and for i >/1 by 

D; = min{inf{ t > O,_ ,: (I('1(0) = 0}, t2(0)} 

O, = min{inf{ t > D~: ~I~ = 1}, t2(0)} 

We also denote n =max{i :  O ; - D z >  0}. 
Observe that n is stochastically dominated by a random variable N 

having geometric distribution with probability of success equal to p2, 
defined in Lemma 1. A new trial of the definitive occupation, under more 
suitable conditions than at time t = 0, occurs at times O,.. 

Let us take ,~ = { _+ e~ ..... + e j } ,  the set of the nearest neighbors of the 
origin. We have that for every k ~< n there exists a random set A that has 
at least one of the elements of the set ~ such that •{ol -~/~ ( x ) =  1 for all x E A .  
This happens because at the instant Dk a stirring arrow arises connecting 
the origin to some element y of d with 

Using the strong Markov property, the attractiveness of the EC(2), 
and a Feller (~(~) estimate to the probability of the first return to zero for a 
random walk with a drift toward the origin, we can guarantee that there 
exist 0 <  C~, ),~ < co such that 

P( O ; -  D~ > s) ~< P(inf { ~i"'~ (0)  = 1 } > s) 
t 

~<P(inf{Xi e ' l = 0 } > s ) < ~ C , e  ~'~" (3.1) 
! 

and the events {D~ =s} and { O ~ -  D, = t} are related to two disconnected 
regions of the graphical representation, which means that we can construct 
an auxiliary random variable Tr, stochastically bigger than O ~ -  D j, with 
an exponential tail (3.1) and independent of D[. 

On the other hand, we can verify that at times O~ a random set B~ of 
sites enclosing the origin will be occupied. For B := B~ (random) we define 

t_,n(0) = sup{ t: ~ ( 0 )  = 0} 
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and for attractiveness we verify that it is possible to construct a coupling 
with an auxiliary variable [_,(0) which has the same distribution of t2(0), is 
independent of Dj,  and is such that [2(0)> t~(0) for any B. We may think 
that in the case the origin becomes vacant and then occupied again we can 
forget every particle outside the origin; then the time that we have to wait 
until the definitive time of occupation /2(0) is bigger than it should be, 
t~(0), and independent of what happened in the past. 

Using the random walk X~ -''1 and the auto duality of EC(2), and 
defining J/(s)  to be the set of realizations of the graphical representation 
such that there exists an exclusion arrow at time s joining the origin to 
some y e &  it follows that for any ) , e o  ~ there exists 0 < C ~ ,  ),,_< 
such that 

p ( z ) ,  > s ) =  P ( { ~ I " ~ ( o )  = I,  v t  < r, ~.!"~(0) = O, J / ( , ' ) }  ) a,  ' 

f. ,z~, P( { ~i.'4(O)=O, Vt <~ r) dr<~ C2e -r2" (3.2) 

The particle that was occupying the origin could jump to any y e s  
with equal probability; for the jump to occur, that site must be vacant at 
time s. In order for the event {D, >s} to occur, that jump must happen 
after time s. Here P represents a probability density. Working with the dual 
from that y, we have that it could not have visited the origin before the 
dual time s. The last inequality comes when we compare the process ~I"'1 
to XI"'I and follow Cammarotta and Ferrari (ref. 6, p. 7). 

We observe now that t2(0) assumes value zero with probability P2 
(defined in Lemma 1) and assumes the value O~ + t~(0) (B random and 
enclosing the origin) with probability (1 -p_,).  From that we have for 0 > 0 
that the following inequality holds: 

iF[expl 0,_,,~1 ] ~< P2 + E[exp I~ + r, + i_.,,~1~ ]( 1 -- P2) 

and then, using the exponential Chebyshev inequality, 

~(t2(O) > t) <~ e-~ 1 -- [EEe ~ "' + r,] ](1 -- P2)} - - I  

As a consequence of the last inequality, (3.1), and (3.2) we get that, for 
small enough 0 > 0, there exist 0 < C, 2 < m such that 

P(t2(0) > t) <~ Ce-X' | 
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4. BE(A) W I T H I N  THE H O R I Z O N T A L  STRIP AS SEEN F R O M  
THE EDGE 

Bramson  et aL ~-~ studied this process for d =  1 concent ra ted  at the set 
of  configurat ions with a r ightmost  particle. There  they proved  the unicity 
of  the invar iant  measure  for the process as seen f rom the r ightmost  particle 
and the fact that  it is concent ra ted  on configurat ions with a finite number  
of  vacant  sites (holes) to the left of  the r ightmost  particle. Here  we show 
that  the n u m b e r  of  holes to the left of  the r ightmost  particle has an 
exponential  moment .  

Let .,ff = { 0 ..... N -  1 } and denote  

g 2 = { 0 ,  1} ~ - '  

and 

= { 11 e/2" t7(0, y)  = 1 for some y e ~ U, q(x, y)  = 0, V(x, y)  e t~ x .  ,~/~ } 

Fo r  p on ~ and ~,' restricted to 77 x ,,it we define 

Y~, ' = sup{ x e 77: r y) = 1 for some y e ,S}  

and (t,'(x, y ) = ~ t , ' ( x + X , ,  y) is the t ranslated process, as seen f rom the 
r ightmost  occupied vertical line; in this way, (~,': t>~0) is a process with 
state space on ~ because the particles are not  allowed to leave the strip or  
to create new particles off the strip. Next,  we define for q e ~ and x ~< 0 

H x ( q ) =  ~ [ 1 - - q ( x ,  y ) ]  
. t '  6 I " 

which is the n u m b e r  of  holes on the vertical line x in the q configurat ion,  
and 

/4(,7)= Z [~c,,,,,,,>,,l(x)] 
x ~< 0 

which is the n u m b e r  of  vertical lines on the left of  the r ightmost  vertical 
line occupied, with at least one hole. 

Theorem 3. The process {((7, t>~O), r / e ~ }  has only one invar iant  
measure  v, and there exist 0 < C, ], < ~ such that  

v ( {H>~k} )~Ce  -~'k, V k e ~  (4.1) 
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In part icular ,  v is concent ra ted  on 

~ 0 = { P T ~ : q ( x , y ) = l  i f x < M a n d y ~ o + ' f o r s o m e M > - c o }  (4.2) 

Proof. The existence of  the invariant  measure  is guaranteed by a 
theorem in Liggett  ~H~ (p. 10), because the process {(~7, t ~ > 0 ) , r / e ~ }  is 
Feller and ~ is compac t  (for more  details see Bramson  et al. ~ or 
F e r r a r i / ~ )  The  unicity is obta ined as follows. Let v be an invariant  
measure; any configurat ion with a finite number  of  particles is t ransient  
because particles are created and are not killed. As a consequence,  v is con- 
centrated on configurat ions in ~ with an infinite n u m b e r  of  particles. 
Defining 72(x )=max{ t2 (x ,y ) :y~ jV ' } ,  it follows, as a consequence of  
Theorem 2, that  this r a n d o m  variable has an exponential  tail. We show 
below that  if v is invariant ,  then it must  satisfy (4.1). This implies that  v 
must be concent ra ted  on Do and we finally conclude the p roo f  because 
( ~ ,  t~>0) is a process with a countable  state space, which allows us to 
assert the unicity of  the invariant  measure  since under  this measure  the 
process is an irreducible M a r k o v  process on a countable  state spaceJ ~o. 141 

Now we are going to put  into practice our  program.  For  n ~ N let 

A,(n) = {H ,,(r > 0} 

be the event that  there is at least one vacant  site at the vertical line - n  at 
time t. Moreover ,  let 

b,(n) = inf{s: H x;_,,(~) < N} 

be the first instant that  some site of  the vertical line - n ,  as seen from the 
position of the edge at t ime t, was occupied. For  technical reasons we set 
b,(n) = t if that  never happened  up to t ime t. 

We study the displacement  of  the r a n d o m  walk which starts f rom 
some occupied posit ion of  the origin line to assure that,  for t big enough,  
the probabi l i ty  of  the event {H,,(r for some s<~t} is very high. 
More  precisely, for each n we make  t ( n ) = n  2 in order  to have that  the 
embedded  r a n d o m  walk start ing from the origin line, with very high prob-  
ability, has over taken  the vertical line n. Tha t  event assures us the 
occurrence of the event { H  ,,(r N} for some 0 <<, s <~ t(n). Tak ing  x = 0 
(the origin), kve construct  the processes X',' and X;" ~- together  (we make  a 
coupling) in order  to have XI'>~ X"" ~- stochastically. As the r a n d o m  walk 
X,"-" has a drift like 1/2d toward  + co, we can ensure that  for any e > 0 
there exist 0 <  ),~, C~ < co such that  

,,(Ix )t)- / ( . )  ~ 112 - -  8 I e ?'lit 
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Now for t2(x)= max{ t2(X, y)'y ~ Jff}, we can verify that 

<~ ~ IP({t2(O,y)>t})<~NP({t2(O,z)>t}) 
) , ~ . l  

for some fixed z e J ' .  As t2(0, z) ~< tt(0, z) + t2(0, 0) stochastically, where 
the two terms to the right have an exponential tail, we have that ?~(x) also 
has an exponential tail. 

Now we need the following two inequalities: 

v 

N-I 

and 

c~ ( ~ - ~ - - e ) <  b,(n) ~< t (n)})  (A,(n) {t(n)-n N-~ 

~< P ( { S , , < n  N - '  

where S, = ~7= ~ Yi is a sum of independent exponential random variables 
with parameter N(~.+ 1 ). To show the first inequality in the last display, 
notice that, given that the line x is occupied by at least one particle, the 
waiting time for the line x + 1 to be occupied dominates Yi stochastically; 
the last inequality is a direct result from the large-deviations theory for 
random independent variables (ref. 9, p. 9). We have that 

vI~,(n)) 

{ ~,(n) ~ t ( n ) - n  N - '  

N-J 
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and consequently 

N - t  O} ) 

To conclude the proof of (4.1), we use the relation 

{,1 e~: ,7(x, y)= 1 Vx< -m, r y e s }  c {,~ eb:  g('l)~m} 

which implies 

{ r/e.O: H ( q ) > m }  

c {r/eta: 3(x, y) with x <  - m  such that r/(x, y ) = 0 }  

r f _  

= U {~z.~:~_.,.(~)>o} 
A = m +  [ 

and 

r j _  

i =m  

finishing the proof of (4.1). 
exponential moment 
implies (4.2). 
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v({n_;>0})~< ~ C e - ' = C e - '  .... 

i = l i t  

As a consequence, we see that H has an 
and, in particular, that v ({H= ~ } ) = 0 ,  which 

5. THE A S Y M P T O T I C  VELOCITY OF THE EDGE 

One can define the microscopic velocity of the branching exclusion 
process on a strip in many equivalent ways; this was pointed out by 
Kerstein, It-'~ who also made many interesting computations. With a 
rigorous approach, Bramson et al. ~3> proved that for d =  1 (here IX[ = 1) 

lim E ( X [ )  - x/ /2  
2 -- ~-,_ t N / / ~  

where v is the invariant measure of the system as seen from the edge. Their 
proof relies on a mean-field limit theorem stated in De Masi et al/tT~ and on 
a large-deviation result for the branching exclusion process. By adapting their 
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ideas when we consider ,Y",' to be the horizontal coordinate of the position 
of the rightmost occupied site of ..t/~\,, the connected strip (an infinite 
cylinder), we can prove that, for every N, 

lim E(,Y",') = 1 (5.1) 

where v is the invariant measure of the system, as seen from its rightmost 
occupied line (the existence of v is guaranteed as a consequence of 
Theorem 3 and the change of the constant is a matter of scale). Moreover, 
we can rotate the strip and define ~', to be the number of particles created 
inside the strip .~iv rotated by arctan(p/q)  (where 0 < q ~< p and p, q e [~) 
up to time t and assuming the one-sided initial configuration; essentially by 
Theorem 3 we can assure that 

E,.(2,)- ~ [E,.(~',) 
N p,/ q 

and then follow Bramson et al. c3~ to show that (5.1) holds for the rotated 
strip. 
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